KREIOS 150

Next Generation Electron Momentum Spectrometer for Small Spot ARPES and Momentum Microscopy

The KREIOS 150 is a new generation of electron spectrometers for high performance ARPES and PEEM. The unique lens systems combines and immersion lens for PEEM operation with a hemispherical energy analyzer scanning system for unrivaled ARPES measurements. Its lens system aquired the fill half sphere of the electron emission for ultimate angular acceptance of 180°.

The KREIOS 150 displays energy vs k-vector or energy vs spatial information directly on the detector. With the scanning lens it is possible to measure a full 3D dataset for ARPES or energy filtered PEEM. The lens system features apertures to refine the k-space into high contrast and dark field PEEM, as well as field apertures to select a spatial region for µ-ARPES down to 2 µm field of view. The kinetic energy up to 1500 eV allows XPS and XPEEM measurements. With the new CMOS detector the KREIOS 150 is the most performing ARPES analyzer available.

With a 2D CMOS detector is shows outstanding performance in countrate, linearity and a true pule counting mechanism. It combines a state of the art lens system with a proven hemipshere design for highest transmission and resolution.

The energy analyzer section is equipped with 8 customizable entrance and 3 exit slits. For highest energy and mapping resolution the entrance slit can be chosen down to 50 µm. The analyzer comes with a highly stable power supply, for best performance in a wide kinetic energy range.

This analyzer features the spectroscopy mode for data aquisition. For momentum microscopy a special MM and MM Twin version is available.

KEY FEATURES

  • Ultimate Acceptance Angle of 180°
  • Spectroscopy Mode
  • Energy Resolution of Better than 10 meV
  • µ-ARPES with down to 2 µm
  • PEEM Operation with <100 nm resolution
  • 8 mÅ-1 k resolution
  • Large Field of View
Back to top

MADE FOR THESE METHODS

2
Back to top

RELATED PRODUCTS

65
Back to top

PUBLICATIONS

  1. (2018) The graphene/n-Ge(110) interface: structure, doping, and electronic properties

    The implementation of graphene in semiconducting technology requires precise knowledge about the graphene–semiconductor interface. In our work the structure and electronic properties of the graphene/n-Ge(110) interface are investigated on the local (nm) and macro (from μm to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate n-doping indicating weak interaction between graphene and the Ge substrate. With regard to the optimisation of graphene growth it is found that the substrate temperature is a crucial factor, which determines the graphene layer alignment on the Ge(110) substrate during its growth from the atomic carbon source. Moreover, our results demonstrate that the preparation route for graphene on the doped semiconducting material (n-Ge) leads to the effective segregation of dopants at the interface between graphene and Ge(110). Furthermore, it is shown that these dopant atoms might form regular structures at the graphene/Ge interface and induce the doping of graphene. Our findings help to understand the interface properties of the graphene–semiconductor interfaces and the effect of dopants on the electronic structure of graphene in such systems.



    J. Tesch, F. Paschke, M. Fonin, M. Wietstruk, S. Böttcher, R. J. Koch, A. Bostwick, C. Jozwiak, E. Rotenberg, A. Makarova, B. Paulus, E. Voloshina, Y. Dedkov
    Nanoscale, 10, pp. 6088-6098
    Read more
Back to top

DOWNLOADS

1