**Detail**

## Quantum Transport

QUBITS are the smallest functional unit of a quantum information processing device or, in other words, a quantum computer. The electronic transport properties can be probed by a Nanonis Tramea system connected to a low temperture cryostat.

Back to top

## APPLICATION NOTES

**Probing Quantum Transport by Scanning Gate Microscopy (SGM)**

Most scanning probe microscopy techniques are ideal to investigate theproperties of the first few atomic layers of a surface, but are useless when the system of interest is buried deeper. For example, scanning tunneling microscopy (STM) yields extremely detailed information on the surface electrons, but fails to operate on electronsburied below oxides. Scanning Gate Microscopy (SGM) overcomes this limitation by scanning the electrically biased tip in a plane parallel to the electron of interest, and simultaneously recording a map of the variations of electrical resistance of the system. In other words, the tip induces a local electrostatic potential perturbation, which affects the electron transport.

download PDF

**Topological Insulator Josephson junctions**

In a topological insulator (TI), the electronic structure of the bulk reveals a unique topology that leads to the formation of conducting surface states with intriguing properties. The topological protection of the surface states and the possible emergence of Majorana fermions in superconductor/TI hybrid devices make these materials a leading candidate for use as a robust platform for future fault-tolerant quantum computation. The main challenge in creating these structures lies in the fabrication of an electrically transparent interface between the conventional superconductor and the topological insulator. A Josephson junction, formed by two closely spaced superconducting electrodes separated by a gap of less than 100 nm, can be used as a measure of the quality of the electrical interface. At low temperatures the superconducting electrodes induce superconductivity in the topological insulator by the proximity effect, with a finite Josephson current observed across a sufficiently narrow gap.

download PDF

**Measuring Electron Temperature using Nanonis Tramea**

The Nanonis Tramea Quantum Transport Measurement System (QTMS) was used to measure electron transport through an electrostatically defined Gallium Arsenide (GaAs) quantum dot in an Oxford Instruments Triton 200 dilution refrigerator. The high-speed demonstrated by Nanonis Tramea allowed for a significant reduction in the measurement acquisition time and the low noise environment of the Oxford Instruments dilution refrigerator combined with the Tramea system, allowed us to measure an electron temperature of 35 mK. This was equal to the base temperature of the cryostat with customised wiring installed.

download PDF

**Characterization of Germanium Nanowire**

Using a combination of the Nanonis Tramea quantum transport measurement system fully integrated with an Oxford Instruments HelioxVL refrigerator, the energy levels of a qubit have been successfully measured in a Germanium nanowire. Due to the lower noise and faster speed of this measurement system, conduct-ance measurements with greater detail are produced in shorter acquisition times.

download PDF

**Transport and RF-Reflectometry Measurements of CMOS Nanodevices**

Pioneering work on semiconductor quantum dots has shown that quantum dots are promising candidates as a building block (qubit) for quantum information and computation. Quantum dots are quasi-zero-dimensional nanostructures which can confine single electrons, whose spin or charge degree of freedom can then be used to represent quantum bits (qubits).
Quantum computing approaches based on semiconductors can build upon mature micro/nano-fabrication technologies, which will be invaluable in scaling up to a large number of reproducible qubits with practical yields and integrated electronics. As part of the classical information technology industry, CMOS transistors have reached sufficiently small feature sizes that quantum effects can begin to play a dominant role. This motivates the exploration of quantum effects in such transistors fabricated using CMOS processes.

download PDF

**Tuning and Operation of Quantum Dots and Related Apparatus**

Spin qubits in quantum dots are promising candidates towards quantum computation. However, a considerable amount of technical development is still necessary before the advent of a quantum computer. For quantum dots, this involves independently controlling and sweeping the voltages of a multitude of electrostatic gates and monitoring several charge sensing signals. Thus, a fast measurement device with a high number of inputs and outputs is critical for the efficiency of the development of multiple quantum dot devices. The group of Michel Pioro-LadriÃ¨re at Institut Quantique, UniversitÃ© de Sherbrooke, Canada, have recently conducted measurements on quantum dots and related components using the Nanonis Tramea instrument, which will be discussed in this application note.

download PDF