Logo enviroDetail

EnviroESCA Sample holders

Adjust your EnviroESCA to your current experimental needs with our range of sample plates!

EnviroESCA has been designed with the idea in mind that in the future, any kind of sample should be XPS compatible. While samples up to 12 cm in diamater and 4 cm in height can be introduced on the large main plate, some experiments require a more specialized approach. The plate can therefore be outfitted with different specialized sample holders for achieving different temperatures, hold SEM stub type holders, or introduce electrical contacts to the sample.

KEY FEATURES

  • Multiple sample holder options, adjusted to your experimental needs
  • SEM stub compatible High Temperature holder for laser heating up to 800 °C
  • Resistive heating plate for temperatures up to 600 °C
  • Peltier cooled plate for temperatures down to 5 °C
  • Multipin in situ electrical contacts available

MADE FOR THESE METHODS

1

RELATED PRODUCTS

6

APPLICATION NOTES

PUBLICATIONS

  1. (2021) <p>Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ analysis of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol and pyridine atmospheres</p>

    Surface-supported metal-organic frameworks HKUST-1 (Hong Kong University of Science and Technology) were used as a model system for a development of a near ambient pressure (NAP) XPS based approach to investigate interaction with atmospheres of water, methanol or pyridine at pressures ranging from 1 to 4 mbar. The films were grown on a gold substrate functionalized with a COOH-terminated self-assembled monolayer using liquid-phase epitaxy in a step-by-step fashion. Measurement protocols were developed and optimised for different gases in order to obtain spectra of similar quality in terms of signal intensity, noise and shape. Peak shapes were found to depend on the efficiency of charge compensation. Reference measurements in argon proved to be a useful strategy not only for the evaluation of the Cu(II)-fraction in pristine samples, but also to identify the contributions by the respective gas atmosphere to the C 1s and O 1s photoelectron spectra. Reduced copper was found during the exposition of HKUST-1 to water vapour and pyridine, but this effect was not observed in case of methanol. Additionally, it was established that there are no changes in relative Cu(II) percentage with increasing exposure time. This indicates that saturation was reached already at the lowest time of gas exposure. A detailed elucidation of the mechanism of Cu(II) reduction to Cu(I) in HKUST-1 mediated by water and pyridine is part of ongoing work and not in the scope of the present paper.



    M. Kjærvik, P. M. Dietrich, A. Thissen, J. Radnik, A. Nefedov, C. Natzeck, C. Wöll, und W. E.S. Unger
    Elsevier B.V. , 2021, 147042
    Read more
  2. (2020) Effects of Background Gas Composition and Pressure on 1,4-Polymyrcene (and Polytetrafluoroethylene) Spectra in near-ambient pressure XPS

    Near-ambient pressure XPS (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., at 2500 Pa or greater. With NAP-XPS, XPS can analyze moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission we show C 1s, O 1s and survey NAP-XPS spectra from 1,4-polymyrcene. The C 1s and O 1s envelopes are fit with Gaussian-Lorentzian product, asymmetric Lorentzian, and Gaussian-Lorentzian sum functions, respectively. Water vapor and argon are used to control sample charging, and the corresponding signals from the gases are present in the survey spectra. The effect of background gas pressure on photoelectron attenuation is illustrated with a sample of polytetrafluoroethylene.



    Dhananjay I. Patel, Aleksandar Matic, Helmut Schlaad, Stephan Bahr, Paul Dietrich, Michael Meyer, Andreas Thißen, Sven Tougaard, and Matthew R. Linford
    Surface Science Spectra (Vol.27, Issue 1)
    Read more
  3. (2020) Polyethylene terephthalate by near-ambient pressure XPS

    Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., at greater than 2500 Pa. With NAP-XPS, XPS can probe moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, C 1s, and O 1s NAP-XPS spectra of polyethylene terephthalate, a common, widely used thermoplastic. The C 1s envelope was fit with different approaches, i.e., to three, four, and five Gaussian–Lorentzian sum (GLS) functions. Hartree–Fock orbital energy calculations of a model trimer served as a guide to an additional fit of the C 1s envelope. The best fit was obtained by adding an extra component to the four-component fit to compensate for adventitious carbon or additives in the polymer. The O 1s signal was well fit with two GLS peaks with a 1:1 area ratio representing the C—O and C=O moieties in PET.



    Tahereh G. Avval, Grant T. Hodges, Joshua Wheeler, Daniel H. Ess, Stephan Bahr, Paul Dietrich, Michael Meyer, Andreas Thißen, and Matthew R. Linford
    Surface Science Spectra 27, 014006 (2020)
    Read more
  4. (2020) Roman coin, by near-ambient pressure XPS

    Near ambient pressure-x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., at greater than 2500 Pa. With NAP-XPS, XPS can probe moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, O 1s/Ag 3p, Ca 3p/Ag 3d, and extended valence band (0–130 eV) NAP-XPS spectra of an ancient Roman coin at three different positions. A small N 1s signal from N2 background gas is also observed. On the obverse side, the coin bears the bust of Licinius I. On the reverse side, it bears the image of Jupiter. The Ag 3d region indicates different amounts of silver at different oxidation states in different positions.



    Tahereh G. Avval, Sean C. Chapman, Jeffrey T. Chapman, Stephan Bahr, Paul Dietrich, Michael Meyer, Andreas Thißen, and Matthew R. Linford
    Surface Science Spectra 27, 014022 (2020)
    Read more
  5. (2020) Role of Water in Phase Transformations and Crystallization of Ferrihydrite and Hematite

    The oxides, hydroxides, and oxo-hydroxides of iron belong to the most abundant materials on earth. They also feature a wide range of practical applications. In many environments, they can undergo facile phase transformations and crystallization processes. Water appears to play a critical role in many of these processes. Despite numerous attempts, the role of water has not been fully revealed yet. We present a new approach to study the influence of water in the crystallization and phase transformations of iron oxides. The approach employs model-type iron oxide films that comprise a defined homogeneous nanostructure. The films are exposed to air containing different amounts of water reaching up to pressures of 10 bar. Ex situ analysis via scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray diffraction is combined with operando near-ambient pressure X-ray photoelectron spectroscopy to follow water-induced changes in hematite and ferrihydrite. Water proves to be critical for the nucleation of hematite domains in ferrihydrite, the resulting crystallite orientation, and the underlying crystallization mechanism.



    A. Arinchtein, R. Schmack, K. Kraffert, J. Radnik, P. Dietrich, . Sachse, R. Kraehnert
    ACS Applied Materials & Interfaces
    Read more
  6. (2020) <p>Probing Lithium-Ion Battery Electrolytes with Laboratory Near-Ambient Pressure XPS</p>

    In this article, we present Near Ambient Pressure (NAP)-X-ray Photoelectron Spectroscopy (XPS) results from model and commercial liquid electrolytes for lithium-ion battery production using an automated laboratory NAP-XPS system. The electrolyte solutions were (i) LiPF6 in EC/DMC (LP30) as a typical commercial battery electrolyte and (ii) LiTFSI in PC as a model electrolyte. We analyzed the LP30 electrolyte solution, first in its vapor and liquid phase to compare individual core-level spectra. In a second step, we immersed a V2O5 crystal as a model cathode material in this LiPF6 solution. Additionally, the LiTFSI electrolyte model system was studied to compare and verify our findings with previous NAP-XPS data. Photoelectron spectra recorded at pressures of 2–10 mbar show significant chemical differences for the different lithium-based electrolytes. We show the enormous potential of laboratory NAP-XPS instruments for investigations of solid-liquid interfaces in electrochemical energy storage systems at elevated pressures and illustrate the simplicity and ease of the used experimental setup (EnviroESCA).



    P. M. Dietrich, L. Gehrlein, J. Maibach and A.Thissen
    Crystals 2020, 10(11), 1056
    Read more
Close
Your web browser is deprecated
This could effect the presentation and some functions of our website.