BP5 (for STM and AFM)

The Base Package is the core unit of a Nanonis SPM Control System

Nanonis SPM Control System Base Package 5
Base Package of the Nanonis SPM Control System: RC5 real-time controller and SC5 signal conversion interface
Nanonis SPM Control System Base Package 5
Base Package of the Nanonis SPM Control System: RC5 real-time controller, SC5 signal conversion interface and Nanonis SPM software

The base package provides all the functions for fundamental SPM applications, in particular STM and contact mode AFM. From signal conditioning and AD/DA conversion to FPGA and real-time signal processing and graphical user-interface, the Nanonis Base Package provides a complete framework that can be adapted and extended with a wide range of add-on modules.
Base Package: Realtime Controller RC5, Signal Conversion unit SC5 and Nanonis SPM software.

KEY FEATURES

  • Fully asynchronous multi-tasking interface
  • State of the art hardware performance
  • Interactive scan control with easy navigation
  • Multipass scanning
  • Highly configurable Z-controller with SafeTip™
  • Oscilloscopes, spectrum analyzer(FFT), data loggers, charts and graphs
  • Advanced spectroscopy on user-defined point, line, cloud, grid or combined scan-grid.

MADE FOR THESE METHODS

1

APPLICATION NOTES

High-Resolution Imaging and Spectroscopy of Water on NaCl(001) Surface
The interaction of water with the surfaces of solid ma-terials is ubiquitous. Many remarkable physical and chemical properties of water/solid interfaces are gov-erned by H-bonding interaction between water mole-cules. As a result, the atomic-scale description of H-bonding structure and dynamics is one of the most important fundamental issues in water science. Ideally, attacking this problem requires the ability to access the internal degrees of freedom of water molecules, which remains a great challenge due to the light mass and small size of hydrogen.
download PDF
Controlling QPlus small Amplitudes with Nanonis Setup
A growing number of users are opting for a modified setup of their STM combining a standard instrument with a QPlus Sensor to do non-contact AFM. QPlus sensors can be easily integrated with the existing STM head since they are based on oscillations of quartz tuning forks. The detection of such oscillations is done electrically and no additional laser system is required. When combined with low temperature this technique leads to a large spectrum of applications.
download PDF
Exploring Nanoelectromechanic of Ferroelectrics: PFM with Dual-OC4
Piezoresponse Force Microscopy (PFM) is now the primary technique for imaging, spectroscopy, and domain patterning in ferroelectric materials. Piezoresponse (PR) studies of ferroelectric materials has started in the beginning of 90s [1], and today undergo exponential growth due to rapidly emerging applications of ferroelectric and multiferroic materials for nonvolatile memories and data storage [2, 3]. These applications have stimulated extensive efforts toward understanding the mechanisms for polarization reversal in ferroelectrics on the nanometer scale.
download PDF
Automated Switching Between Non-Contact and Contact Modes of AFM
The study of plasticity by means of atomic force microscopy (AFM) is a fascinating experiment, as it is possible to observe the nucleation of single dislocations directly in the indentation force curve and image the resulting deformed surface structure with high resolution.
download PDF
Single Pass Kelvin Probe Measurement Technique in Air with Dual-OC4
The Kelvin probe technique is increasingly gaining importance in AFM measurements since it gives access not only to the topography but also to chemical information of the tip and sample. It is an extremely sensitive analytical method to detect changes in contact potential difference between different materials or chemical elements on the surface.
download PDF
Compensating for CPD in NC-AFM: AM-KPFM in UHV using Dual-OC4
Single pass Kelvin probe imaging (KPFM) gives information on the electronic structure of materials by measuring contact potential difference (CPD) while simultaneously acquiring topography. Under vacuum condition the Q factor is higher than in air, leading to higher resolution for both Kelvin and topography images.
download PDF
Modulation of Contact Resonances: Use of PLL in Contact Mode AFM
Friction force microscopy (FFM) is a useful technique capable of characterizing material mechanical properties, such as elastic module, adhesion, and friction down to atomic scale. When combining static lateral force measurements with dynamic measurements of contact resonance frequencies the sensitivity is improved, i.e. subsurface defects are easier to detect than in conventional quasi static FFM.
download PDF
Friction Force Microscopy
Friction force microscopy (FFM) is a powerful tool which allows us to study the origin of friction in single asperity contacts. The observation of atomic stick-slip and its variation with load, during the sliding of tip against another solid surface provides detailed information about the dissipation mechanisms. Statistical averaging of repeated measurements with good control over experimental parameters is of crucial importance for reliable FFM measurements.
download PDF
Feenstra Type of Spectroscopy: Making use of the Programming Interface
Spectroscopic measurements in STM are an important tool for the investigation of the electronic states at surfaces. When combined with the variable tip-sample separation technique this type of spectroscopy leads to high dynamic range, 5 to 6 orders of magnitude, in the measured current and conductance even on the semiconductor surfaces with low surface state density.
download PDF
Improved Atomic Scale Contrast via Bimodal DFM: Dual OC4
Frequency-modulation atomic force microscopy (FM-AFM) is an efficient and already widely spread technique to obtain atomically resolved images of insulating or metallic surfaces. Typically, FM-AFM is based on scanning a sharp tip of a macroscopic cantilever over the surface, where the tip-surface distance is usually controlled by the frequency shit (f1) of the first normal resonant mode (f1) of the cantilever. The atomic-scale contrast arises from short range forces; e.g. covalent or ionic bonds, thus the detection sensitivity of the FM-AFMcan be improved by using small tip oscillation amplitudes comparable to the decay length of the short-range forces, ~ 0.1 nm. A lot of efforts are put in this direction in the FM-AFMfield, mainly based on the excitation of a tuning fork sensor or higher flexural modes of cantilevers characterized by largerstiffness.
download PDF
Automated Amplitude Calibration in non-contract AFM Mode
Calibration procedures are always very important for correct quantitative measurements in SPM. In the absence of an interferometer, acquiring an accurate calibration using nc-AFM is complicated. The routine also has to be repeated multiple times for an accurate determination of the amplitude calibration factor which requires a non-negligible amount of time.
download PDF
Mapping the Orbital Structure of Impurity Bound States in a Superconductor
Superconductivity is a low-temperature phenomenon caused by the pairing of electrons via interactions me-diated by the environment. A signature of supercon-ductivity is that no single electron can be injected at low energies because the only possible states are the ones corresponding to pairs of electrons. Hence, an absolute gap in the density of states (DOS) is a finger-print of conventional superconductors. In s-wave su-perconductors such as lead the paired electrons (i.e. the Cooper pairs) have opposite spin. An external magnetic field forces the electron spins to align, there-by breaking the pairing and destroying superconductivity.
download PDF
Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene
This is the first observation ever of a stable and tuneable charged vacancy in graphene and could allow researchers to fabricate artificial atom arrays for performing the electronic equivalent of optical operations.
download PDF
Supramolecular Rotary Device
For years a lot of efforts have been put on designing organic molecules whose properties can be exploited for building up artifi cial molecular devices. Together with our partners from the University of Basel and the ETH Zurich we created a specially functionalized molecule that on a Cu(111) surface does not only form a nanoporous network, but also have the right size to be nested on top of the pores.
download PDF
Trapped 2D free e- Gas of Cu(111) withinRegular Array of QDs: STS study
Two dimensional quantum confinements at surfaces have always been a challenge for the scientists, mainly because of the difficulties to produce regular nanopatterns that can trap electronic states. One possibility of analyzing such structures is Scanning tunneling Microscopy (STM) and Spectroscopy (STS) at low temperature.
download PDF
Femtogram Resolution for In-Situ Monitoring of FIB and E-Beam Induced Milling
The optimization of focused ion and electron beam induced processes for the reliable fabrication of micro- and nanodevices has been of increasing importance. For this a further understanding of the basic physics underlying the process is necessary. In-situ process monitoring is an efficient way to move forward in this field.
download PDF
Ultra-Low Current STM at 100fA
Scanning at ever lower currents is an ongoing effort in the STM community. In a test run at the University of Lille, the Nanonis control system was put to test with an Omicron-1 STM to measure atomic resolution images on a Si-111 sample.
download PDF
22-bit on all Ouput Channels: Nanonis hrDAC
In digital SPM control system the resolution of the digital-analog converters has always been a limiting factor, both in achieving atomic resolution and in spectroscopy applications. The newly developed hrDAC™ not only overcomes these limitations, but compared to the usual offset/gain approach, also has a series of other advantages.
download PDF
Integrating External Equipment - User Chanenels in the Nanonis SPM controller
We use the Nanonis SPM Control System and Oscillation Controller to operate our tuning fork-based JEOL microscope. The z-feedback runs on the frequency shift of the tuning fork. To make local capacitance measurements we attached a separately contacted metal tip to one prong of the tuning fork. In our effort to map local charge defects in Hf-based high-k gate films we had to integrate the signals from two ex-ternal lock-in detectors with the data acquisition of the control system.
download PDF
Doing Electrochemistry with an SPM tip: EC-SPM
Electrochemical SPM (EC-SPM) in liquid electrolytes provides an addi-tional level of experimental control for in-situ studies of surfaces and redox active adsorbates. Independent control of the tip and surface electrode potentials enables atomic resolution imaging and spectros-copy of electrochemical surface processes. This method allows for real-time analysis of electrochemical processes occurring at the electrolyte-surface interface as compared to ex-situ methods and has proven to be an invaluable experimental tool in the fields of electrochemistry and surface science.
download PDF
Single-Scan Kelvin Probe Technique in Air with Dual Oscillation Controller
In atomic force microscopy electrostatic forces are usually not discriminated against van-der-Waals forces. Attractive electrostatic forces cause the distance controller to retract the tip from the surface, resulting in erroneous height information in the topography image. Together with Nanonis we developed a novel solution to this longstanding problem.
download PDF
Atom Manipulation with Nanonis SPM Controller
Atom manipulation often attracts the interest of researchers, not only for observing artificial patterns on the surface, but also since it allows preparing ideal “samples” on surfaces, designed for a specific measurement. At the same time, however, it often requires a complete custom made scanning probe controller. Although the first systematic atom manipulation was demonstrated in 1990s, it is still challenging for mostresearchers. This application notes shows how the fully-digital Nanonis SPM controller with its LabVIEW Programming Interface can significantly reduce the technical challenges and simplify the manipulation process.
download PDF
Needle Sensor Operation in non-contact AFM Mode
Needle sensors are becoming increasingly popular to measure the tunneling current while not depending on the current for the distance feedback. A resonance frequency of 1 MHz insures a fast response of the sensor while interacting with the surface, but it requires a highly accurate Phase Locked Loop (PLL) to perform non-contact AFM measurements, especially with low frequency shift set points.
download PDF
SPM 150 Aarhus with KolibriSensor
On-the-Fly Switching Between STM and AFM - Topography Feedback
download PDF
SPM 150 Aarhus with KolibriSensor
Atomic resolution NC-AFM imaging with subangstrom oscillation amplitudes at room temperature
download PDF
SPM 150 Aarhus with KolibriSensor
Acquisition of atomic site specific force spectroscopy and two-dimensional force maps F(x,z) on KBr(001) and Au(111) at room temperature
download PDF
SPM 150 Aarhus with KolibriSensor
Atomic resolution NC-AFM on KBr(001)
download PDF
SPM 150 Aarhus with KolibriSensor
Atomic Resolution NC-AFM on Si(111)-(7x7)
download PDF
SPM 150 Aarhus with KolibriSensor
Atomic resolution NC-AFM imaging on Au(111) at room temperature
download PDF

DOWNLOADS

1